Rapid Communication Methamphetamine Rapidly Decreases Vesicular Dopamine Uptake

نویسندگان

  • Jeffrey M. Brown
  • Glen R. Hanson
  • Annette E. Fleckenstein
چکیده

Vesicular sequestration is important in the regulation of cytoplasmic concentrations of monoamines such as dopamine. Moreover, recent evidence suggests that increases in cytoplasmic dopamine levels, perhaps attributable to changes in vesicular monoamine transporter function, contribute to methamphetamine-induced dopaminergic deficits. Hence, we examined whether striatal vesicular uptake is altered following methamphetamine treatment. Multiple administrations of methamphetamine rapidly (within 1 h) decreased vesicular dopamine uptake and dihydrotetrabenazine binding, an effect that (a) persisted at least 24 h, (b) was associated with dopamine and not serotonin neurons, and (c) was unrelated to residual drug introduced by the original methamphetamine treatment. These data suggest that methamphetamine rapidly decreases vesicular monoamine transporter function in dopaminergic neurons, a phenomenon that may be associated with the long-term damage caused by this stimulant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits.

It has been hypothesized that high-dose methamphetamine treatment rapidly redistributes cytoplasmic dopamine within nerve terminals, leading to intraneuronal reactive oxygen species formation and well characterized persistent dopamine deficits. We and others have reported that in addition to this persistent damage, methamphetamine treatment rapidly decreases vesicular dopamine uptake, as assess...

متن کامل

A single methamphetamine administration rapidly decreases vesicular dopamine uptake.

Recent studies demonstrated that vesicular dopamine (DA) uptake can be rapidly altered in synaptic vesicles purified from the striata of stimulant-treated rats. Specifically, a single administration of the plasmalemmal DA transporter inhibitor, cocaine, or the DA D(2) agonist, quinpirole, increases vesicular DA uptake in vesicles purified from the striata of treated rats. These effects of cocai...

متن کامل

Alterations in vesicular dopamine uptake contribute to tolerance to the neurotoxic effects of methamphetamine.

Previous studies demonstrated that tolerance to the long-term neurotoxic effects of methamphetamine on dopamine neurons could be induced by pretreating with multiple injections of escalating doses of methamphetamine. The mechanism(s) underlying this tolerance phenomenon is unknown. Some recent studies suggested that aberrant vesicular monoamine transporter-2 (VMAT-2) and dopamine transporter fu...

متن کامل

Methamphetamine administration reduces hippocampal vesicular monoamine transporter-2 uptake.

Repeated high-dose injections of methamphetamine (METH) rapidly decrease dopamine uptake by the vesicular monoamine transporter-2 (VMAT-2) associated with dopaminergic nerve terminals, as assessed in nonmembrane-associated vesicles purified from striata of treated rats. The purpose of this study was to determine whether METH similarly affects vesicular uptake in the hippocampus; a region innerv...

متن کامل

A rapid and reversible change in dopamine transporters induced by methamphetamine.

Because high doses of methamphetamine promote free radical formation, and striatal dopamine transporters are rapidly inactivated by oxidative events, we determined the effect of a single high dose of methamphetamine on dopamine transporter activity in striatal synaptosomes. One hour after methamphetamine administration, dopamine uptake decreased by 48%. This dramatic decline was totally reverse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000